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Bounds on Iterated Coerror Functions 
and Their Ratios 

By D. E. Amos 

Abstract. Upper and lower bounds on yn = in erfc(x) and rn = Yn/Yn-i, n > 1, 
- X < x < c, are established in terms of elementary functions. Numerical procedures 
for refining these bounds are presented so that rn and Yk, k = 0, 1, . . . , n, can be computed 
to a specified accuracy. Some relations establishing bounds on r' and r"' are also derived. 

Simple Bounds. Let yn(x) = in erfc(x), n =-1, 0, 1, * . . The basic inequality 
(see (31)) 

(1) Pn(X) = n-2(X)Yn(X (x) < n > 1, 

expressing monotone decreasing behavior of rn(x) = x)lyn-,(x) n > 1, in both 
n and x, 

(2) =rn 2 < 0 

is derived in the Appendix. The utility of this relation follows from the recurrence 
formulae for the iterated coerror function, 

(3) Y-1(x) = i-l erfc(x) = 2e-x2/7l/2, yOx) = iO erfc(x) = erfc(x), 

Yn-2 = 2nYn + 2XYn-1, n = 1, 2, --- 

to yield 

(4) rn= 2nr2 + 2xrn- 1 < 0, n ? 1. 

This establishes bounds on the ratios rn =Yn/Yn-l 

0 n<- 
X + (X2 + 2n)"/2 -B 

2n B(x) 
since the parabola v = 2nt2 + 2xt - 1 is negative between its roots. The upper bound 
is of most interest and we write Bn(x) in the form 

-x + (x2 + 2n)'2 
~~\XJ 2n x 0 

(5) n > 1, 

=X + (x2 + 2n) 1/2 ' 
> 
_ O 
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414 D. E. AMOS 

to avoid losses of significance in computation when x is large and positive. Further- 
more, if we divide (3) by Yn-, and solve for r,,-, we get 

1 1 
(6) 2x + 2 =Bj(x), n >l. (n 2x + 2nrn 2x + 2nBn(x) 

Thus, we have (with a shift of index) 

(7) Cn(x) < rn < DnWx, 

and recursion on (7) in the form Cnyn-, < yn < Dnyn-1 produces 

n n 
(8) erfc(x) H Ck(x) < Yn < erfc(x) H Dk(x) 

k=l k=1 

where, in this context, 

(9) Cj(x) = Bk+l(x) and Dk(X) = Bk(X). 

Table 1 gives some numerical results for these bounds. Both relative and absolute 
errors can be assessed. The number of significant digits in yn is approximately the 
minimum number in agreement between Ck and Dk as k ranges from 1 to n. 

TABLE 1 

Cn and Dn Of (9) compared with rn 

n\x -10 -5 0 5 10 

1 1.005E+01 5.098E+00 7.071E-01 9.808E-02 4.975E-02 
1.000E+01 5.000E+00 5.642E-01 9.635E-02 4.951E-02 
5.050E+00 2.596E+00 5.OOOE-01 9.629E-02 4.95JE-02 

10 1.o048E+00 5.854E-01 2.236E-01 8.5l41E-02 4.772E-02 
1.0o43+00 5.T788E-01 2.181E-01 8.)449E-02 4.T75E_-02 
9.566E-01 5.389E-01 2.132E-01 8.)435E-02 4.752E-02 

20 5.458E-01 3.266E-01 1.581E-01 7.656E-02 4.580E-02 
5.1438E-01 3.240E-01 1.562E-01 7.598E-02 4.564E-02 
5.218E-01 3.139E-01 1.54-E-01 7.584E-02 4F.563E.02 

50 2.41iE-01 1.618E-01 1.000E-01 6.180E-02 4.142E-02 
2.4o8E-01 1.612E-01 9.950E_02 6.156E-02 4.132E-02 
2. 374E-01 1.595E-01 9.901E-02 6.146E-02 4.130E-02 

100 1.356E-01 1.000E-01 7.071E-02 5.000E-02 3.660E-02 
1. 364E-01 9.978E-02 7.053E-02 4.989E-02 3.654E-02 
1.355E-01 9.934E-02 7.035E-02 4.985-02 3.653E-02 

200 8.090E-02 6.l40oE-02 5.000E-02 3.904E-02 3. 090E-02 
8.o82E-o2 6. 396E-02 4.994E-02 3.899E-02 3.o887E-02 
8.061E-02 6.384E-02 4.988E-02 3.897E_02 3.086E-02 
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For x > 0 the upper bound of (7) immediately implies 

Yn(X) < 
n-l(X) _ _- < Yn-l(X) <Y-1() 

(I 0) x + (X2 + 2n)"2 _ (2n)12 < Yn1(x), 

yn-l(x) 
x + (x2 + 2)1/2 

yn < Yn-i can also be established for n > 0 by induction on 

(11) Yn(X) = f Yn-(t) dt, n > 0O 

and the upper bound in Mill's ratio [4], [14, p. 343] 

( +/2 i erfc(x) 
(12) m(x)-= w/2 

- 
fc(1 ) 

< 7/2 
- 2x + ([(ar - 2)x]2 + X)1/2 

= M(x), x ? 0. 

(See references for other results on Mill's ratio.) With these inequalities, purely ele- 
mentary bounds on yn can be given: 

1/2X~ <= ye 0 2M12 , > _ O 

(13) 7I 71 

2 m(x)ex'2 2M(x)e x2 n 

1/2x~ to Ck (X) < An < 1/2 I Dk(X), X _ 0, n _ 1. 
7r k=1 7r k=1 

Elementary bounds for x < 0 follow from the identity erfc(x) = 2 - erfc(-x). 
An upper bound on yn(x) for x > 0 can be obtained from (11) and (12) by induction 

(14) yn(x) < - 27 [M(x)]n+lle', n > 0, x _ 0, 
7r 

using M(t) < M(x) for t > x. Simple backward recursion in (10), followed by (12), 
gives complementary forms 

(15) 2/X1'2H~x~e " n ?0, x _ 0. 

Y(x) (< _X + (X2 + 2)"1/2 

While the bounds in (7) were obtained from rn' < 0 and are best for large positive x, 
Eq. (36), rn7 > - 1/n, represents the other extreme, and bounds from this inequality 
would be best for large negative x. They are (7) with 

-X + (x2 + 2n - 2)1/2 x < 0, 

(16) n ? 1. 

1 - 1/n 
x > 0, 

X + (x2 + 2n -2)1/2 ' 4=U 

Dn(x) = Bn(x). 

Table 2 shows the results for these bounds. 
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TABLE 2 

Cn and Dn of (16) compared with rn 

n\X -10 -5 0 5 10 

1 1, 005E+01 5. 098E+00 7.071E-01 9. 808E-02 4.975E-02 
1.000E+01 5.000E+00 5.642E-01 9.635E-02 4.951E-02 
1.000E+01 5.000E+00 0. 0. 0. 

10 1.048E+00 5.8514E-01 2.236E-01 8,541E-02 4.772E-02 
1.043E+00 5. 788E-01 2. 181E-ol 8. 449E-02 4. 753 -02 
1.o043E+00 5.779E-01 2.121E-01 7,.787E-o2 4.314E-02 

20 5.458E-01 3.266E-01 1.581E-01 7.656E-02 4.580E-02 
5.438E-01 3.240E-01 1,562E-01 7,598E-02 4,.564E-02 
5.437E-01 3.23)4E-01 1. 54lE-01 7.345-02 4. 368E-o2 

50 2.414E-01 1.618E-01 1.ooE-01 6.18oE-o2 4,.142E-02 
2.408E-01 1.612E-01 9,950E-02 6.156E-o2 4.132E-02 
2.407E-01 1.609E-01 9.899E-02 6.091E-02 4.o7TE-02 

100 1.356E-01 1.OOOE-01 7.071E-02 5.OOOE-02 3.660E-02 
1. 34E-o1 9.978E-02 7.053E-02 4.989E-02 3.654E-02 
1.365-01 9.967E-02 7.036E-02 4.967E-02 3.63JE-o2 

200 8. O90E-02 6.4o4E-02 5.OOOE-02 3,90o4-02 3.090E-02 
8.o82E-o2 6.396E-02 4.994E-02 3.899E-02 3.087E-02 
8.o79E-o2 6.392E-02 4.987E-02 3.892E-02 3.079E-02 

Bounds on Yn/Yn-k can be obtained by bounding each term of 

YnYn-k = rnrn-1... rn-k+l 

Improved Bounds. The simplicity of the previous bounds is appealing; however, 
they are not very sharp near x = 0. The results of this section improve this situation. 
Relation (35) in the Appendix is 

rn = 2nr2 + 2xrn- 1 <-r, - X , rn rn I >~~~~~n 1 

< -rn expI-x2}, x < 0, 

Following through as before, we get (7) with the bounds 

2n + 2 + exp{- X2} 

Cn(x) =2x exp{-x2} + (2n + 2)/D.+1(x) n+l(x), X < 0, 

2n + 3 

(17) ~~~(2n +4)x +(2n +2)(X2 +2 n+ 3)1/2X X- 
0, 

2n +exp{-x2} x<0O. 

1 

_X + (X2 + 2n + ex2 I _XX>1O. 
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TABLE 3 

Cn and Dn of (17) compared with rn 

n\x -10 -5 0 5 10 

1 1, 005E+01 5. 098E+00 5,1774E-01 9.717E-02 4, 96 3E-02 
1.000E+01 5.000E+00 5.642E-01 9.635E-02 4.951E-02 
5.050E+00 2.596E+00 5,590E-01 9.632E-02 4.951E-02 

10 1.0o48E+00 5.854E-01 2.182E-01 8.,487E-o2 4, 762E-o2 
1. 043E+00 5.788E-01 2.181E-01 8.,449E-02 4.T753E-02 
9,566E-01 5. 389E-01 2.180E-01 8. 44_E-o2 4, 752E-02. 

20 5. 458E-01 3.266E-01 1, 562E-01 7.620E-02 4,.572E-02 
5.438E-01 3.24o0E-01 1, 562E-01 7.598E-02 4, 564E-02 
5.218E-01 3,139E-01 1.561E-01 7.593E-02 4,564E-02 

50 2.414E-01 1.618E-01 9,950E-02 6.163E-o2 4,.136E-02 
2.4o8E-01 1.612E-01 9,950E-02 6.156E-o2 4.132E-02 
2,374E-01 1.595E-01 9,950E-02 6,153E-o2 4,l131E-o2 

100 1.366E-01 1,000E-01 7.053E-02 4.992E-02 3.656E-02 
1. 364E-01 9.978E-02 7T053E-02 4.989E-02 3.654E-o2 
1,355E-01 9.934E-02 7.053E-02 4,.988E-02 3.654E-o2 

200 8.090E-o2 6. 4o4E-o2 4,.994E-02 3.900E-02 3,088E-02 
8.082E-02 6.396E-o2 4,.994E-02 3.899E-02 3.087E-02 
8.061E-02 6. 384E-o2 4.994E-02 3.899E-02 3.087E-02 

whose derivatives of order 2 or greater are discontinuous at x = 0. (The other half 
of (35) leads to Cn(x) in (9).) Table 3 shows these results for some numerical values. 
Notice also that for x < 0. Dn+1 is a lower bound on rn. While these bounds are 
relatively good at x = 0, they can be made sharp by observing that 

(18) rn = 2nr2 + 2xrn- 1 t rn(O) = 2nr 2(0)- 1, x t 0 

is exact at x = O., where 

(19) r(O) = (n + 1)72) > 
2P(n/2 +1)' n0 

The inequalities in (18) follow from (38) which shows that r' is monotone increasing 
in x. The roots give 

-X + (X2 + 2nan)"/2 

(20a) 2n 

Cn 
( an X > O s 

X+ (X2 + 2nan) 1a t 

where an = 2nrn2(0) and, with (6), 



418 D. E. AMOS 

-X -x + (x2 + 2(n + 1)a.+ 1)"/2 X< 

(20b) C2(x) 2(n + +)a.+1 x < 0, 

D.(x) = 1 >_0 
X + (X2 + 2(n + 1)an+i )1/2> O. 

Table 4 shows the partial improvement over Tables 1, 2 and 3. Bounds analogous 
to those in (10) and (15) can be formed for x > 0 by setting x = 0 or n = 1 in Dn(x) 
of (20b). The largest lower bound and the smallest upper bound among the formulae 
listed would be the best over the range of interest in n and x. 

Iterative improvements, generating upper and lower bounds at each step, can be 
made by recurring backward on (6), starting the continued fraction approximants 
with some Cn and D, (see also the next section on numerical computations). 

The connection between these bounds and Mill's ratio can be established by 
taking (6) with n = 1 and applying the expressions for Cl(x) or Dl(x). (20a) for x > 0 
gives the upper bound quoted in the NBS handbook [1, p. 298] while (5) for x > 0 gives 
the lower bound in the same reference. (20b) gives Boyd's [4] lower bound (12). 

The bounds in (12) are fairly sharp with maximum relative errors of 1.17% and 
0.91%, respectively. Best results are obtained with M(x) for x < 0.85 and m(x) for 
x > 0.85, with an overall maximum relative error for this combination of about 0.86%. 

TABLE 4 

Cn and D, of (20) compared with rn 

n\x -l0 -5 0 5 10 

1 1.003E+01 5.063E+OO 5.642E-01 9.,7o4E-02 4.961E-02 
1. OOOE+01 5, OOOE+00 5.642E-o1 9.635E-02 4.951E-02 
6.16E+00 3.280E+00 5.642E-01 6.287E-02 3.173E -02 

10 1.O 5E+00 5.818E-O1 2.181E-o1 8.486E-02 4.762E-02 
1.O 43E+00 5.788E-01 2.181E-01 8.,49E-02 4.753E-02 
9.989E-01 5.6o5E-01 2.181E-o1 8. 176E-02 4.550E-02 

20 5. 448E-01 3.250E-01 1. 562E-01 7.619E-02 4.571E-02 
5.438E-01 3.240E-01 1, 562E-01 7.598E-02 4,.564E-02 
5.334E-01 3.200E-01 1. 562E-01 7.502E-02 4,.476E-02 

50 2. 411E-01 1.614E-01 9.950E-02 6.163E-02 4.135E-02 
2.408E-01 1.612E-01 9.950E-02 6.156E-02 4 .132E-02 
2. 394E-01 1.6o6E-01 9.950E-02 6. 136E-02 4.107E-02 

100 1.365E-01 9.983E-02 7.053E-02 4.992E-02 3.656E-02 
1. 4E-01 9.978E-02 7.053E-02 4.989E-02 3.654E-02 
1.35lE-01 9.967E-02 7,053E-02 4,.983E-02 3.646E-02 

200 8.o85E-02 6.398E-02 4i.994E-02 3.900E-02 3.088E-02 
8.o82E-02 6.396E-02 4i.994E-02 3.899E-02 3.087E-02 
8 .076E-02 6. 394E-02 4.994E-02 3.898E-02 3. o85E-02 
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Numerical Computation of rn and yk, k = 0, 1, ** , n. In [5] and [6], Gautschi 
shows that forward recursion on (3) is appropriate for x ? 0 while an iterative back- 
ward technique on (6) (which generates continued fraction approximants) is appro- 
priate for x > 0 for stability. It would be hard to improve on the simplicity of the 
forward recursion for x < 0 but some improvement is possible for x > 0 because 
the continued fraction approximants are slowly convergent for x close to zero. The 
results developed above are exploited to get accurate values of r" so that the ratios 

.5 
(21) X + kr= k = n, n- 1, , 1, x > O0 

can be computed for the relation 

_2k 
(22) Yk =- -H ri, k = O 1, 2, *.* *, n, x > 0. 

The method which has proved successful in computing r7, is based upon a restatement 
of (21) with k replaced by k + 1, 

[2(k + 1)(rk+l/rk)rk + 2x ]rk = 1, 

in the form 

1 ~~~~~~~~rk+1 
(23a) = x + (x2 + 2(k + I)Rk+l)1 R rk 

Then, with Dk of (20b) as an initial approximation to rk for k > n (see Table 4), 
the algorithm becomes 

0_1 (23b) rk = x + (x2 + [ + 
)rk+l(0)]2)"72 I k = n, n + 1, n + v' x > 0, 

where rk(0) is defined in (19), and 

R' = rIr' k = n, n + 1, * , n + - m -1, 
(23c) m1 

x + (x + 2(k + 1)Rk +1) 

r, k = n, n + 1, n. ,n+ , 

approximate H X X 
values of rn, 

rn m O 1, **,v 

FIGURE 1 

The iteration diagram is shown in Fig. 1. rn is the approximate value of rn, and only 
two successive diagonals need be stored. 

Although the convergence proof below does not show that rn decreases monotoni- 
cally to rk on the columns of Fig. 1, the numerical results were all of this character. 
If this were true in general, it would follow, on using (21), that 
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Cn _ < rn <rn) 
2x + 2(n + 1)rnY+ 

and the error criterion 

Irn - rnl/rn < Irn- cnl/cn < e 

could be used to terminate the process to guarantee a relative error e. Even if the 
monotonicity is violated, this is a sensible method of termination since r and 
hence cn, can be expected to be slightly less accurate than r,. The construction of 
rigorous bounds using (23a) is shown in the convergence proof of the algorithm. 

Some experimentation shows that if n < 25 (say) and x < 2, n should be increased 
to 25 before the iteration is started to increase the rate of convergence. Upon com- 
pletion, the backward recursive step in (21) is applied followed by (22). Notice that 
for x = 0, r4 = rk(O) and v = 1. With a relative error e = 5 X 10', extensive evalua- 
tion of this procedure showed that v < 5 (a maximum of 6 applications of (23b) 
and 15 of (23c)) held for x > 0 and 0 < n ? 100. For n ? 50 the maximum value 
of v was 4, but the number of steps in (21) to reduce the index when the starting index 
is small diminishes this advantage somewhat. 

Straight backward recursion with (21) starting with C200 or D200 of (9) gave only 
4 significant digits in erfc(0.1). The corresponding computation with C200 or D200 of 
(20a) or (20b), which are accurate at x = 0, gave 6 significant figures. This amounts 
to iteration of these bounds according to (6) or (21). It is common to avoid underflow 
problems by scaling y, by ex in (22). 

The forward recursive loop for x < 0 is started with y-,(x) and y0(x) where 
yo(x) = 2 - erfc(lxl) for x < 0. The scheme for x > 0 is used to compute erfc(jxj). 
If x < X0 (X0 = -6 for a CDC 6600 computer), y0(x) = 2 to the word length of the 
machine and the erfc (Ixl) computation can be avoided. 

The methods exploited here have concentrated on recursion, primarily for sake 
of computation. However, the differential inequalities developed in the Appendix 
can be integrated for other types of apprxoimations. 

Convergence of the Algorithm. 
THEOREM. If x ? 0, the sequence r' generated by (23c) converges to rk as m -* o 

for each k > n ? 0. 
The proof consists of constructing monotone sequences of upper and lower bounds 

on rM which converge to rk. Let D,' = r. Using (20b) and (21), we have 

(24) CO 
2x + 2(k + 1)Dok+ _ rk 

? 
rk 

= 
Dk. 

Substitution of these bounds into the expressions rk+l/rk and rk+l/rk yield 

(25)C, < <rLL21 < and1 r?L 
<__+ (25) D = = and 0 < r < koCr 

Another substitution of the bounds in (25) into the denominators of (23a) and (23c) 
for m = 0 give new bounds D. and C., 

>J _rk C> k, D' 2 r? > Ck1 

where 
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(26) 

1 - I~~ 1 n Dk -=x + (X2 + 2(k + 1)C+ I/ DO)2 and Ck = X + (X2 + 2 (k + 1)D +ll/Ck)"12 

Notice that equality holds throughout for x = 0. Continuing in this way, we can 
inductively construct sequences of bounds Dn and Ck on rk and r'm. However, con- 
vergence is obtained by showing monotonicity of each sequence, 

Dk -< Dm and - Ck +l>Ckm m = 0, 1, 2,* 
Thus, for m = 0, we need to establish Do > Dk and Ck ? Cko before going on to 

the induction. Do > Dk follows by showing that 

Ck+l Rk+3(0)(X + (X + 2(k + 1)Rk+l(O))") 
gAX) - +2 + 

[2Rk+3(0) - k + 31x + k + 2 
(X2 + 2(k + 3)Rk+3(0))"2 

in the denominator of D' is greater than 

(27) Rk+1(O) = rk+1(O)/rk(O) = 2(k + k)rk+l(O) 

in the denominator of Do for x > 0. (The last expression in (27) is obtained from (6) 
with x = 0 and Ck0+ is obtained from (24) by rationalizing the denominator of Do+2.) 
This inequality, g(x) ? Rk+1(0), can be proved by showing monotone increasing 
behavior of g(x) together with g(O) = Rk+ (0). g(0) = Rk+1(0) follows from (25) and 
(27) and the fact that equality holds for x = 0 in (25). The positivity of g'(x), 

Rk+3(0) g'(x = 
(x + a) 2(x2 + c)"2 

[(ab - cd)(ab + cd)x2 + ac(ab2 - cd2) + bx(a - c)A(x)1 
L A(x)(dx + b(x2 + a)l/2)2 

where 

a = 2(k + 3)Rk+3(0), c = 2(k + 1)Rk+1(O), 

b = (k + 2)/(k + 3), d = 2Rk+3(0)- b- 

A(x) = ab(x2 + c)"12 + cd(x2 + a)/2, 

will follow if the quantities a - c, d, ab -cd, ab2 _ cd2 are shown to be positive. 
A direct application of (33) and (39) for x = 0 gives a > c since 

Rk(X) = 1 + r'(x), rf+ (x) > rk(x) => Rk+l(x) > Rk(X) 

On the other hand, d > 0 follows from (33), (35) and (7), with (9), for x = 0 since 

2 ~2 k k+2 
Rk+3(0)= 1+r+3(0) _ 1 -2rk+3(0) > 1 - 2(k+3) k+3 b 

implies d > b > 0. 
In order to deduce the signs of ab - cd and ab2 - cd2, we first express Rk+3(0) 

in terms of rk+l(0) by means of (27) and (6), 

(28) Rk+3(0) = 2(k + 3)rk+3(0), rk+3(O) k + 3 rk+l(). 
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Then, with (27) and (28), 

ab - cd = 4brk+1(0)[(k + 2) + (k + 1) - 4(k + 1)2(k + 2)r +k(O)] 

ab - cd2 = 4b2rk+1(0)[(2k + 3) -4(k + )(k + 2)rk+1(O)] 

*[1 + 4(k + 1)(k + 2)rk+1(0)]. 

If we use (19) for rk+l(O) together with r(z + 1) = zr(z) in the denominator, we get 

2r(O) = 1 r2(k/2 + 1) 
r+0 =(k + 1)2 r2((k + 1)7 2) 

and the upper bound of [18], 

n -S < r(n + 1) < (n + s)ls, n > 0, 0 < s < 1, 
=P(n + s)= 

with n = k/2, s = 1/2, suffices to establish the sign of ab - cd, 

ab - cd > 4br +1(0)[2k2 + 6k + 5 -4(k + 2)( 2 )] = 4br*+1(0) > O. 

However, sharper results are needed to show ab2 - cd2 > 0 for k ? 0. The results 

stated in (45) can be applied, for k > 4, 

r2(k/2 +1) k 1 1I 48 
r ((k + 1)/ 2) <2 +4 +16k- 32k2 5k 3 k_4 

and this yields 

b2 - 2 >4b rk+1(0) [3 __ 
3 - 763 3841 4k+ )(+ 2)r+1(O)] > 0 

k + L 4 8k 20k2 5k31 [ + 4(k + I)(k + 2)rO 

for k > 9. Direct substitution was used to verify ab2 _ cd2 > 0 for k = 0 through 
k = 9. Thus, D' > D' with strict inequality for x > 0. 

For Ck, we take the defining equation (26) and substitute (24) for Cko to get 

= 1 1 0 

k X + (X2 + 2(k + 1)Dk+1(2x + 2(k + 1)Do+i))112 2x + 2(k + 1)DO+= k 

To summarize the situation for m = 0, we have 

(29) Do > D' > rk >Ck = Co and Do > D' > rk > C= Ck 

Now, we repeat the induction steps (24) through (26) for m = 1. Thus, (29) 

applied to rk+llrk and rk+l/rk yields 

Ck+1 < r +1 < 1 -rk <D 
1 = 1 ~and 1= 

D> rk Ck D> rk Ck 

These expressions with (23a) and (23c) for m = 1 give new bounds Dk and CQ, 

Dk rk > Ck D =_rk Ck 

where 

x + (x2 + 2(k + =)Ct /Dk) x + (x + 2(k + 1)D1+l/CS2 
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Then, by (29), 

Ck + 1> k+0 D11_D2 
1 = k l == Dk -> Dk and Dk+l <- => Ck k. 

Thus, for m = 1 we have 

D?> D > D 2> 
rA 

> Ck> Ck = Cko and Do > Dk > Dk _ r2 > Ck > Ckl = 

with strict inequality in C2 > C. for x > 0 because Do > Dk for x > 0. 
Continuing in this way, we compute inductively a sequence D"k which is bounded 

and monotone decreasing while C, is bounded and monotone increasing with r" and 
rk between these bounds. Each sequence therefore has a limit DA; and CA; such that 

Dk = 
1 ) Ck D 1 _). 

x + (x2 + 2(k + I)Ck+,DA) X + (X2 + 2(k + l)DA,+l/Ck)l 

Solving for each of these radicals and squaring gives 

(30) Dbk 2x + 2(k + l)Ck+l 2x + 2(k + 1)Dk+1 

and combining the relations in (30) produces 

1 1 
2x + 2(k + 1) 2x + 2(k + 1) 

2x + 2(k + 2)DDk+2 2x + 2(k + 2)Ck+2 

Each of these lead to the continued fraction for rA; which can be developed similarly 
by repeated application of (6). Therefore, D,, = C,, = r,, and r" converges to r,,. 
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Appendix. Some Relations Involving rn, r' and r". We start with the selfad- 
joint differential equation 

dt(ey= 2net Yn, n > -1, dt 

and apply Green's theorem to the relation 

f n [Yn-l d (etYn) - Yd (etyn-l)] dt = 2 f ety(t)yn(t) dt 

to get 

Y -1Y' - Yn~t-= -2e-x f et 
Yn(t)yn-1(t) 

dt, n > 1, 

or with (11), 

(31) Yn(X)Yn-2(X) - Y 1 (x) = -2en f et y>(t)y 1(t) dt < 0, n > 1. 
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Therefore, 

Yn~n-2 2 

(32) r(x) = -y2- 1 = - ( etYn(t)yni(t) dt < 0, 

(33) rn() I < 0 and 0 < rn< 1, n > O. 
rn-1 rn-1 

The recursion relation (6), reciprocated and differentiated, provides the recursion 
relation for rn, 

(34) rn-1 = -2rn1(1 + nrn), 

which shows that rn > -2rn. On the other hand, a direct estimate of (32) using 

exp t2-x2} > 1 for t > x ? 0, 

_ e-X2 for t _ x and x < 0, 

and the differential form of (11) gives 

-2 2 
< rn, < -_ 

2 x > 0, 

< -r2 exp{-x 2}, x < 0. 

(34) in the form 

-rn I/(2rn ) = 1 + nrn > 0 

also shows that 

(36) rn > -I/n, 

which is better for large negative x than (35). The recursion relation for rn' follows 
from (34) by differentiation, 

(37) rn-jrn'1 + 2nr 1lrn' = 2(rn-1)2. 

The positivity of rn' can be obtained from (32) as follows: 

3 2,2 
Yn-_ r= Yn-2[YnYn -2 Yi] - Yn[Yn-lYn-3 - Yn-2] 

= -2yn2(x)e-x f et Yn(t)yn-1(t) dt + 2yn(x)ex fe e Yn-1(t)yn2(t) dt 

= 2e x f et2yn 1(t)[yn-2(t)Yn(x) - Yn-2(X)Yn(t)] dt. 

This gives, after factorization, 

(38) Yn-1rn = 2eYn f ey Y1(t)Yn(t)Yn(X) Lrn i1rn 1 d>rn(X)rn- ( t>0. 

This not only implies monotone increasing behavior of rn in x, but differentiation 
of (33) establishes monotone behavior in n as well, 

rn-lrn + rn-lrn = - rn-1 > 0 

or 
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(39) 0 > rn > r-1- 

Upper bounds on r"' can be obtained from (37) using r' > 0. r" > 0 also establishes 

(40) r'lrn > r'-1/rn-, 

through differentiation of (33), 

r.-1 r rn- 1 

and with (33) again, 

11rn-- - 1/rn > 1/rn-2 -/rn-1. 

That is, second differences 62(1/rn-,) are negative, 

(41) 52(1/rn-l) < 0, n = 2, 3, 

(39) together with (33) also establishes the monotone decreasing behavior of the 
differences rn1 -rn, 

0 < rn-1 - rn < (rn-2 - rn-1)rn-1/rn-2 < (rn-2 rn-1) 

and hence 

(42) 52(rn_1) > 0, n = 2, 3, 

The expression in (31) is the numerator of 
2 ~~~~~~~~~2 

(43a) d2 In Yn(x) = YnYn-2 
- Yn - < 0, n 1. 

A ~~~~yn 

For n = 0 this works out to be 

(43b) dx 2y1I(x)y1(x) (43b) I~d2 n y0(x) -<y0(x 

Thus we have also established that w = ln in erfc (x) is concave down for all x and 
all n > 0. 

A Sharp Upper Bound on a Gamma Ratio. We start with the asymptotic ex- 
pansion [1, p. 257] 

In r(z) In (Z 2) ln z + 
I 

In 2r + +2 36Z R ~~~~ 
2212z 360z3 

for z > 0 and estimate R by the next term JR1 ? 1/(1260z5). The application of the 
final results dictated this accuracy. This expression can be applied for z = x + 1 
and z = x + 2 to yield 

nr(X + ) I 
x + x + n In + x In1 + - 

12x [( + ) -1 x 

1 [( 1)-3 ( 1 )-3] 
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where 

1R11 < 1/(1260x5), 1R21 < 1/(1260x5). 

Now, the following alternating series for x > 2 can be used for terms up to and 

including X-4 in (44), 

In I + I) = 
I 

- I-2 + 13 + R4(1 R4() 

< 

14 

1 -1 + 13 - 1+ R R5 5x x 2X 3X3 4X x 

(1 + -) = 1-x + X2 + P33() < 3 

(1 +-) 
3 1 + Rl(-), t (x) 3 

Then 

P2(X+1) 1x 16 Pn r( + 4)=Inx+4-93+E 

where 

E = R4(!) + 2xR5(!) - 2xR5(2-) + 3 3 

180x3 [A1(i) A- + 2R1 - 2R2 

and 

JEl < l/x4, x > 2. 

For consistency, terms of degree three or less are carried accurately in estimating 
the exponential 

P2( + 1) = xet = x( + a + + + EV) 

< x + a2+ + + 4 Ea 

+/ +2 3 4 ) 
< x( + ae + 2 +6 +4! (1 - )) 

where 

a = 1/(4x)- 1/(96x3) + E, 0 < a < 3/16, x _ 2. 

Now we expand the powers of a and bound terms of higher order, 

x-i < X-4/2 -4 i > 5, x > 2, 

to obtain 
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(45) r2(X 1) < x l + 4Ix 
I 

+ 6 x 2. 

This expression is asymptotically correct in all terms except the last. 
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